Quantcast
Channel: raspberry pi – rtl-sdr.com
Viewing all 83 articles
Browse latest View live

OH2BNF’s Plan for a Large Scale Raspberry SDR (LSR-SDR) Based on RTL-SDR Dongles

$
0
0

Thanks to OH2BNF for writing in and sharing his plan to build a "Large Scale Raspberry SDR" (LSR-SDR), which will be based on RTL-SDR dongles. To create the LSR-SDR he plans to take a 19" rack which can support up to 40 Raspberry Pi 3's, plus up to 160 USB devices, and turn it into a massive SDR array. The rack is key as it allows for simple power management of all the Pi's and other devices to be connected.

OH2BNF plans to connect 20 or so RTL-SDRs, with some operating individually and with others operating coherently via a common external oscillator. The rack may also contain some transceivers, an ICOM IC-7300, antenna switches, upconverters, LNAs and other hardware too. Once completed he hopes to move the system to a low RFI environment and operate the unit entirely remotely. With this he hopes to solve his local RFI issues. He also writes regarding applications:

Primary objectives are to incorporate automated adaptivity to the system at large – for example leveraging on band condition information, WSPR (Weak Signal Propagation Report) & friends, automated signal detection and decoding, great flexibility in terms of individual cluster nodes being able to fast respond to various needs and tasks, strong emphasis in parallel processing where applicable depending on the problem type and dataset, support for multiple end users benefiting from the computing and reception capacity of the cluster – to name the most significant.

It's an interesting idea for sure, and we hope to see some updates from OH2BNF in the future.

The Raspberry Pi 19" Rack
The Raspberry Pi 19" Rack

The post OH2BNF’s Plan for a Large Scale Raspberry SDR (LSR-SDR) Based on RTL-SDR Dongles appeared first on rtl-sdr.com.


Getting the V3 Bias Tee to Activate on PiAware ADS-B Images

$
0
0

A few owners of our RTL-SDR V3 and/or our Triple Filtered ADS-B LNA (or other bias tee powered LNAs) have been having trouble getting the V3 bias tee to activate on the FlightAware PiAware Raspberry Pi image. The core stumbling point is that the PiAware image activates the dump1090 ADS-B decoder immediately upon boot. To activate the bias tee, the bias tee software requires access to the dongle which it cannot get since dump1090 is blocking it. So to get around this the bias tee must be activated first before dump1090 runs.

PiAware is FlightAware's Raspberry Pi image which feeds their flightaware.com flight tracking service using RTL-SDR dongles. By using our Triple Filtered ADS-B LNA, users can expect increased range and decoded messages, especially when using long runs of coax cable, and/or in environments with strong interfering signals.

In the instructions below we'll explain how to set up a PiAware image that automatically enables the Bias Tee upon boot.

Downloading the V3 Bias Tee Software onto PiAware

First we assume that you're starting fresh from a new PiAware image, so we need to enable WiFi and SSH connections which is part of the standard set up for PiAware. See the following links for instructions.

Enable WiFi via config file https://flightaware.com/adsb/piaware/build

Enable SSH by adding ssh file to boot https://flightaware.com/adsb/piaware/build/optional#password

 
Now log in to your PiAware machine using SSH and PuTTY (or any other terminal software) using username "pi" and password "flightaware".

Run the following commands to update and install some dependencies. 

sudo apt-get update
sudo apt-get install git cmake build-essential libusb-1.0-0-dev

 
Download and install the RTL-SDR V3 Bias Tee software.

cd ~
git clone https://github.com/rtlsdrblog/rtl_biast
cd rtl_biast
mkdir build
cd build
cmake ..
make

Testing the Bias Tee

Over on his blog Akos has created a short guide to activating the bias tee manually, by first stopping dump1090, activating the bias tee, then restarting dump1090. It's a simple one line copy and paste job.

So after installing the rtl_biast software above you can use the following line to test the bias tee. After running this line the FlightAware service should be up and running again, with the bias tee and LNA activated.

sudo service dump1090-fa stop && cd ~/rtl_biast/build/src && ./rtl_biast -b 1 && sudo service dump1090-fa start

Automatically Starting the Bias Tee on Boot

Ideally we don't want to have to reactivate the bias tee manually every time the Raspberry Pi reboots. To make it automatic use the following instructions:

First create a service directory and configuration file

sudo mkdir /etc/systemd/system/dump1090-fa.service.d
sudo nano /etc/systemd/system/dump1090-fa.service.d/bias-t.conf

 
Then paste in the following

[Service]
ExecStartPre=/home/pi/rtl_biast/build/src/rtl_biast -b 1

 
Finally press Ctrl+X then Y to close and save. Now whenever PiAware reboots the bias tee should be automatically activated as this service runs before dump1090 is activated.

Credits:

Thanks to the discussion on the FlightAware forums and in particular user 'obj' for originally finding this automatic solution.

The post Getting the V3 Bias Tee to Activate on PiAware ADS-B Images appeared first on rtl-sdr.com.

Monitoring FT8, JT65, JT9 on Multiple Bands with Low Cost Single Board PCs

$
0
0

Thank you to Michael (dg0opk) who wrote in and wanted to share details of his full SDR monitoring system for weak signal HF modes. His setup consists of nine ARM mini PCs (such as Banana Pi's, Raspberry Pi's, and Odroid's), several SDRs including multiple RTL-SDR's, an Airspy Mini, FunCube Dongle and SDR-IQ, as well as some filters and a wideband amp. For software he uses Linrad or GQRX as the receiver, and WSJTx or JTDX as the decoding software, all running on Linux.

Michael also notes that his Bananapi FT8, JT65 and JT9 SDR monitor has been up and stably running continuously for half a year now. Bananapi's are lower cost alternatives to the well known Raspberry Pi single board computers, so it's good to note that a permanent weak signal monitoring system can be set up on a very low budget. Presumably even cheaper Orange Pi's would also work well.

With his setup he is able to continuously monitor FT8, JT65 and JT9 on multiple bands simultaneously without needing to tie up more expensive ham radios. His results can be seen on PSKReporter. A video of his RTL-SDR Raspberry Pi 3 decoding FT8, JT65 and JT9 can be found here.

Weak Signal Receiver Setup
dg0opk's weak signal receiver setup

The post Monitoring FT8, JT65, JT9 on Multiple Bands with Low Cost Single Board PCs appeared first on rtl-sdr.com.

CrowPi: Raspberry Pi Experimenters Kit Review (With RTL-SDR and RPiTX Tests)

$
0
0

CrowPi is a Raspberry Pi all-in-one experimenters kit that is currently crowd funding on Kickstarter. The idea behind CrowPi is to combine a touchscreen, various sensors, actuators and interfaces into a clutter free kit mounted on a PCB in an easy to carry hard shell case. It's mostly intended to be used in STEM learning environments, however it could also be used for rapid prototyping of Raspberry Pi based ideas, or simply as a portable computer. 

The CrowPi
The CrowPi

The kit has 4 days left on Kickstarter and has already met its minimum goal. Pledging $1,169 HKD (~USD $150) gets you the basic kit which does not include a Raspberry Pi. Higher pledge levels (up to US$250) get you models that include a Raspberry Pi as well as extras such as a 5V power supplies, earphones, heatsinks, keyboards, game controllers etc. Shipping of the units is expected to commence in July.

Elecrow, the Shenzhen based company behind CrowPi kindly sent us a free kit for an honest review. While not directly related to RTL-SDR or RF, we thought that there might be several applications that might make the CrowPi kit useful for prototyping some simple low cost RF based ideas. For example:

  • Prototyping IoT based modules that use the RTL-SDR as a receiver. For example receiving a 433 MHz ISM signal and writing received information to the LCD/LED array or activating the relay.
  • Similarly, using FL2K-SDR or RPiTX to transmit a signal when a sensor is activated, or to transmit telemetry from that sensor (e.g. distance data from the ultrasonic sensor, humidity levels from the DH11 sensor, or light levels from the light sensor)
  • Using an RTL-SDR to prototype an ADS-B plane camera tracker using the two servo module interfaces.

To get an idea of what's packed into the CrowPi, the kit includes the following modules:

  • Everything that came with our CrowPi Demo Kit (Except the Raspberry Pi)
    Everything that came with our CrowPi Demo Kit (Except the Raspberry Pi)
    1920 x 1080 Capable HDMI 7" Touch Screen
  • LCD Module
  • 8x8 Matrix LED
  • Breadboard
  • 4 character 7-seg LED
  • Vibration motor
  • Light Sensor
  • Buzzer
  • Sound Sensor
  • Motion Sensor
  • Ultrasonic Sensor
  • Servo Interface
  • Step Motor Interface
  • UART
  • Tilt Sensor
  • IR Sensor
  • Touch Sensor
  • DH11 Humidity Sensor
  • Relay
  • Matrix of buttons
  • RFID Module

With our kit we also received:

  • 2x GPIO Flex Cables
  • 1x Stepper Motor
  • 1x Servo
  • 1x Charger
  • 1x IR diode
  • 1x NFC Tag
  • 1x Mini HDMI for the Raspberry Pi Zero
  • 1x IR Remote control

Setup, Initial Testing and Thoughts

Setup: Setup was simple and consisted of downloading their customized Raspberry Pi image onto an SD card, connecting the Raspberry Pi to the HDMI, USB and GPIO pins, and then powering it up using the power jack on the CrowPi Board. A user manual is available for download.

Initial Testing: CrowPi provide a set of lessons that show how to use each of the modules on the board. All modules also have Python code examples that are ready to run as soon as you boot up. Immediately after booting up we were able to run their demo code which allowed us to test all the various sensors, print text to the LCD module, activate the 7-seg display, and actuate a servo and stepper motor. 

The tutorials are easy to understand and provide a good basic rundown of the sensors. You will need to have some basic Python skills to understand the Python code however.

Thoughts: The CrowPi is built sturdy, and is definitely easy to use. The touch screen is bright and clear. It is capable of running in 1080P mode, but is a bit too small and hard on the eyes to use at this resolution. We kept the screen in 720P mode. In order to use the Raspberry Pi, you'll need to plug in a USB keyboard and mouse which is not included in the basic kit. A wireless keyboard/mouse combo is ideal. There appear to be speaker holes next to the monitor, but it seems that our demo model is the basic model which does not include built in speakers. The kit is impressive looking and appears to be priced reasonably for what you get.

RTL-SDR and RF Testing

Unfortunately when it came to run the RTL-SDR we instantly ran into a problem. With the one 5V 3A power supply running the Pi, HDMI Screen and modules, it seems that there just isn't enough power budget left over to run the RTL-SDR which draws about 270 - 290 mA current. The RTL-SDR connects fine, but when trying to run GQRX, the Pi 3 shuts down. To get around this problem we have to connect a second power supply directly to the Raspberry Pi 3's input. After doing this the board and kit runs smoothly with the RTL-SDR. Using a powered USB hub would also work.

RPiTX is software for the Raspberry Pi that allows you to transmit RF signals directly via PIN12 or PIN7 from the GPIO ports. On CrowPi PIN12 is already connected to the buzzer, and PIN7 is connected to the humidity sensor. Using PIN12 causes the buzzer to sound, so we tried PIN7. Even though it's connected to the humidity sensor, it doesn't seem to mind the GPIO bit flipping going on. The traces within the board and cable radiate sufficiently to transmit signals strongly enough to use within a room, so no external antenna is needed. Use of PIN7 can be activated in RPiTX by using the "-c 1" flag.

Using our Replay Attacks with an RTL-SDR, Raspberry Pi and RPiTX tutorial, we copied  the signal from the remote control of a 433 MHz alarm/door bell, and used RPiTX to replay the signal. Then by modifying some of the supplied CrowPi Python code we were able to get the doorbell to sound on a touch of the touch sensor, activation of the sound sensor and via activation the RFID sensor. We could see the CrowPi being used as a general tool for learning how to prototype simple IoT or home automatic devices. The video below shows a brief demonstration. 

It would have been nice if these RPiTX GPIO pins could have been exposed, and not connected to a sensor, but the developers of the board had probably not heard of RPiTX as the goal is for a more general classroom application.

CrowPi Demo

Conclusion

If you're looking to get kids or STEM students/hobbyists interested in what Raspberry Pi's can do, then this kit couldn't make it simpler. The single board and briefcase design makes the whole thing very tidy and portable and the kit looks and feels sturdy and professional. If you know a kid interested in electronics, then this kit would make a great present.

You could probably purchase all the components cheaper individually, but at the end of the day an all-in-one kit just makes sense as it is a lot tidier, and much easier to get up and running quickly.

For RF experiments, it's possible to use the RTL-SDR with the minor annoyance of having to connect two power supplies or use a powered USB hub. RPiTX also functions fine on the device and can be used to transmit an RF signal on activation of any one of the sensor modules. This could easily be used to prototype simple home automation or IoT ideas.

The post CrowPi: Raspberry Pi Experimenters Kit Review (With RTL-SDR and RPiTX Tests) appeared first on rtl-sdr.com.

Using an RTL-SDR and RPiTX to Unlock a Car with a Replay Attack

$
0
0

Over on YouTube user ModernHam has uploaded a video showing how to perform a replay attack on a car key fob using a Raspberry Pi running RPiTX and an RTL-SDR. A replay attack consists of recording an RF signal, and then simply replaying it again with a transmit capable radio. RPiTX is a program that can turn a Raspberry Pi into a general purpose RF transmitter without the need for any additional hardware.

The process is to record a raw IQ file with the RTL-SDR, and then use RPiTX V2's "sendiq" command to transmit the exact same signal again whenever you want. With this set up he's able to unlock his 2006 Toyota Camry at will with RPiTX.

We note that this sort of simple replay attack will only work on older model cars that do not use rolling code security. Rolling code security works by ensuring that an unlock transmission can only be utilized once, rendering replays ineffective. However, modern rolling code security systems are still susceptible to 'rolljam' style attacks.

In the video below ModernHam goes through the process from the beginning, showing how to install the RTL-SDR drivers and RPiTX. Near the end of the video he shows the replay attack in action.

Unlock Cars with a Raspberry Pi And SDR - Replay attack

Creating Smart Home Automation Devices with Wireless Power Plugs, an RTL-SDR and RPiTX

$
0
0

Over on his YouTube channel ModernHam has created a video showing him using an RTL-SDR and Raspberry Pi with RPiTX to record and replay the signal generated by the remote of a wireless power plug. A wireless power plug allows you to turn an AC wall outlet on/of remotely via a remote control. Controlling them with a Raspberry Pi can be a simple way to add home automation. One example ModernHam gives is that he hopes to use RPiTX and the wireless power plugs to create a smart coffee pot that will automatically turn on at 7 am, and turn off at 9 am.

In the past we have created a similar tutorial here, but new updates to RPiTX now make this process much easier and more reliable and ModernHam's video shows the new procedure. The new process is simply to look up the FCC frequency of the remote control transmitter, record an IQ file of the transmissions for the ON and OFF buttons, and then use the RPiTX sendiq command to replay the signal. You can then use simple Linux shell scripts to create automation.

Replay Attack with Remote Plugs for Home Automation with the Raspberry PI

YouTube Tutorial: Software Set up for a Portable Raspberry Pi and RTL-SDR Based NOAA Weather Satellite Receiver

$
0
0

Last year in December we posted about Matt's element14 sponsored video which showed us how to create a portable briefcase contained NOAA satellite received based on a Raspberry Pi and RTL-SDR dongle. The build consisted of a heavy duty briefcase, modified ATX PSU and stripped down LCD monitor panel. This build resulted in a rugged and portable receiver. The full series of videos demonstrating the briefcase, ATX PSU conversion, LCD teardown, and NOAA satellite receiver demo can be found on his YouTube Playlist.

In his latest video Matt goes over the software installation procedure for creating an automated NOAA weather satellite receiver on the Raspberry Pi. He uses gpredict for predicting the satellite passes, and the Raspberry Pi version of WXtoImg for decoding the images. The rest of the video shows how to set up the software for your particular location, and how to set up decoding automation.

How To Set Up a Raspberry Pi as a NOAA Satellite Receiver with RTL-SDR

A Portable RTL-SDR Based ADS-B Receiver with Display and 3D Printed Enclosure

$
0
0

Over on Hackaday.io user nathan.matsuda has written about his RTL-SDR based hand held ADS-B aircraft receiver with display and 3D printed enclosure.

His initial idea was to create a flexible and open portable SDR device, however keeping the device open and built for general use meant increased complexity which quickly slowed his progress. Instead [Nathan] decided to focus on just ADS-B for his portable device as living near an airport he’d been interested in aircraft tracking since his first SDR arrived.

The device consists of a Raspberry Zero, RTL-SDR, 3.5″ IPS LCD and a battery pack for portability. For software he uses dump1090 with some custom code for the map plotting. Together with a 3D printed case and some buttons, the result is a very professional looking portable aircraft tracking device.

Hopefully Nathan will continue updating his project page so that others may replicate it on their own.

Raspberry Pi Zero and RTL-SDR Portable ADS-B Receiver
Raspberry Pi Zero and RTL-SDR Portable ADS-B Receiver

Reaching Across Europe with a Raspberry Pi Zero and WsprryPi

$
0
0

Over on YouTube user Techminds has uploaded a video that shows how he is using a Raspberry Pi Zero to transmit WSPR. To do this he uses the WsprryPi software which allows you to transmit WSPR by connecting an antenna directly to a GPIO pin on the Pi Zero. With this no extra hardware is required, although a filter is highly recommended to reduce spurious emissions from harmonics.

In his test Tech Minds directly connected the Pi Zero to an unun and HF wire antenna and ran WsprryPi. His results showed that even with the tiny 10mW output power of the Pi Zero's GPIO port his WSPR messages were able to reach several receivers halfway across Europe, and even to Iceland and Morocco from his home in the UK.

WSPR is an amateur radio digital HF mode designed to be decodable even if the signal is transmitted with very low power and is very weak. It can be used to help determine HF radio propagation conditions as WSPR reception reports are typically automatically uploaded to wsprnet.

WSPR - Weak Signal Propagation Reporter - From A Pi Zero ?

A Raspberry Pi and RTL-SDR Based Boombox

$
0
0

Thank you to Walter P. for writing in and sharing with us his conversion of an old analog boombox into a fully functional wideband software defined radio based on an RTL-SDR dongle and upconverter.

Walters Ghettoblaster RTL-SDR Radio
Walters Boombox RTL-SDR Radio

Inside the boombox Walter stripped away the analog circuitry and replaced it with a new LCD screen, Raspberry Pi, RTL-SDR, upconverter and an audio amplifier. Four rotary switches on top of the radio are used to control the frequency, demod mode and volume, and there is also a numerical keypad which can be used to enter the frequency directly. 5V and HF antenna connectors have been added to the side, as well as an upconverter enable switch on top. Walter also added a Spyserver mode to the software, which allows you to connect to the radio over WiFi with SDR#, although he notes that using the integrated Pi WiFi module seems to introduce noise on the speakers.

If you're interested in building a similar device, Walter has provided the full Python code and installation instructions for his build.

Edit 09 May 19: It was pointed out that the word "ghettoblaster" could be considered offensive in some cultures. We have changed the word in our article to "boombox" and apologize for any unintended offence.

RaspBRadio - ghettoblaster with sdr radio scanner inside

An RTL-SDR and Pi 3 Based Ground Station for Simulated CubeSats

$
0
0

CubeSats are small and light satellites that can these days be built and launched into orbit by almost anyone with a small budget of roughly $40,000. They are a great way for schools and other organizations to get into a space based technology project. A "simulated" CubeSat is one that is not designed to be really launched into space, and is made from low cost hardware. The idea is that simulated CubeSats can be used as tools to help demystify the inner workings of satellites to the public and help CubeSat builders get experience and competence before building the real thing.

A Simulated CubeSat made from a Solar Panel board, Pi Zero, UPS and Tranceiver.
A Simulated CubeSat made from a Solar Panel board, Pi Zero, UPS and Transceiver.

A team from AMSAT have been working on creating open source CubeSat simulator hardware and software. In order to demonstrate the RF capabilities of the simulator a ground station simulator is also required. Recently the team have uploaded instructions on creating a Raspberry Pi and RTL-SDR based ground station.

If you're interested in the CubeSat simulator hardware itself, there was a presentation held back in 2018 that may be of interest to you. According to the presentation somewhere between 30% - 50% of CubeSats fail as soon as they're deployed, so building competence with simulated hardware is a good goal.

2018 AMSAT William A. Tynan W3XO Memorial Space Symposium - Saturday Sessions

Raspberry Pi 4 Released: Improvements to CPU, Networking, USB, RAM and more

$
0
0

The Raspberry Pi is the most popular credit sized computing board in the world. It is commonly used as a low cost and portable computing platform for SDRs like the RTL-SDR. Today the Raspberry Pi 4 was released, bringing us a new US$35 single board computer with many improvements. Some of the main improvements that make the Pi 4 great for software defined radios are listed below:

CPU: The Pi 4 uses a Quad-Core Broadcom ARM A72 clocked at 1.5 GHz. This chip should be significantly faster compared to the older chip used on the Pi3B+ with performance now being similar to that of the Tinkerboard. This will be especially useful for CPU intensive SDR applications like the direction finding and passive radar software for our coherent 4-tuner RTL-SDR known as the KerberosSDR. It should also help allow OpenWebRX servers to serve more simultaneous users, allow graphical programs like GQRX to run smoother, and allow for higher sample rates on higher end SDRs.

GPU: The new faster GPU should help graphical SDR programs run smoother.

RAM: The Pi 4 comes with three RAM options, either 1GB, 2GB or 4GB of RAM. The versions with more RAM will be great for memory intensive applications such as GNU Radio (and compiling GNU Radio). It will also allow more programs to run in the background, and perhaps combined with the improved CPU speed allow for multiple SDRs to be used on demanding tasks.

Networking: The Pi 4 finally support Gigabit Ethernet which will be very useful to people using the board as an SDR server over the internet.

USB: There are now two USB 3.0 ports available which means that USB 3.0 SDRs like the LimeSDR could in theory be used at higher sample rates on the Pi 4.

There are also many other improvements such as dual 4K HDMI ports, a USB-C power supply port and faster SD card transfers.

Raspberry Pi 4 Improvements
Raspberry Pi 4 Improvements

It is not yet known if the very useful Raspberry Pi specific software known as RPiTX will continue to function on the new Pi 4. RPiTX is software that turns Raspberry Pi units into fully functional RF transmitters without the need for any additional transmitting hardware - just attach an antenna wire to a GPIO pin. It works by modulating the GPIO pin in such a way to create almost any type of RF transmission. RPiTX only functions on the specific proprietary Broadcom CPU chips that the Raspberry Pi's use. The Pi 4 does continue to use a Broadcom CPU, so we are hopeful.

The new changes bring the Raspberry Pi up to speed with rivals like the Tinkerboard, but at a lower price and with a much better amount of software and OS support provided. The boards currently cost $35 for the 1GB version, $45 for the 2GB version and $55 for the 4GB version. They are sold via local resellers which can be found on the official Pi 4 product page.

PyPacket: An APRS iGate For Your RTL-SDR

$
0
0

[Pypacket] was developed by GitHub user [cceremuga] and allows you to take advantage of a Linux computer (such as a Raspberry Pi) and an RTL-SDR to quickly and easily build your own APRS iGate.

For those not familiar with APRS, it stands for the [Automatic Packet Reporting System] and is used by amateur radio operators for applications like transferring messages and location data over RF networks and the internet. The internet connection is where an iGate comes into play. An iGate is used to connect an APRS RF network to the internet, so that many isolated RF APRS networks can communicate worldwide. Furthermore this software can be configured as a “SatGate”, which like an APRS iGate will take messages from APRS satellite’s and route them over the internet.

For example, you could have an amateur radio vehicle continually transmitting it’s location via RF to an APRS iGate. The vehicles position can then be viewed online on an APRS aggregation site like aprs.fi, or it could be re-transmitted over RF elsewhere in the world.

An iGate is usually accomplished by using a ham radio tuned to the local APRS frequency (or sat frequency) and then special PC software is configured to gate the messages.  However, with the release of PyPacket the amount of work and cost required to setup an iGate has been cut drastically. 

Remote Spectrum Monitoring with OpenWebRX, RTL-SDR and the Balena Cloud Service

$
0
0

Thanks to Alan Boris of Balena.io for submitting their new blog post titled "Running OpenWebRX on balena to remotely monitor local radio spectrum". Balena.io is an IoT cloud service that is used for "building, deploying, and managing fleets of connected Linux devices".

In the blog post, they show how it's possible to use a RTL-SDR and Raspberry Pi running OpenWebRX to remotely monitor the radio spectrum over the internet. This of course has been done many times before, however, the novel thing here is the use of the Balena cloud platform which makes installing and managing the Raspberry Pi running OpenWebRX much easier.

Balena has a has a special balenaOS image that is first burned on the Raspberry Pi's SD card. The OS image is pre-generated with your home WiFi details, so upon boot it automatically connects to the internet and can be accessed on the balenaCloud dashboard. At that point you can easily remotely push the pre-made Balena "sdr-spectrum-monitor" docker image to the Pi from the Balena online dashboard. This docker image has OpenWebRX and the RTL-SDR drivers already installed on it. It's then a simple matter of connecting to OpenWebRX via the local IP address as you would normally.

This is quite a nice system as it avoids needing to perform the "fiddly" steps of setting up WiFi, connecting to the Pi, determining the Pi's IP address, and installing the RTL-SDR drivers and OpenWebRX software manually.

Balena also has a very simple way to make the OpenWebRX server accessible from outside your network. The only steps required are to set a port variable in the Balena cloud dashboard, and enable the "public device URL" option. No need to fiddle around with unblocking ports or dynamic DNS services.

Balena.io appears to be free for personal use, allowing you to add and manage up to 10 devices before needing to pay.

RTL-SDR & OpenWebRX Installed and Managed via Balena Cloud.
RTL-SDR & OpenWebRX Installed and Managed via Balena Cloud.

A Homemade Boat Computer with RTL-SDR for Weather Fax, NavTex and more

$
0
0

Over on Hackaday we've seen a post about [mgrouch]'s "boat computer" which consists of a Raspberry Pi 4, HDMI display, and a whole slew of sensors and receivers useful for a marine environment including an RTL-SDR.

The built in equipment includes a GNSS receiver, orientation sensors, AIS receiver, 4G and WiFi, lightning EMI sensor and alarm, optional autopilot integration, rudder angle sensor, connections to boat instruments like wind, depth, speed, temperature, barometric and humidity sensors, an Iridium receiver, and finally an RTL-SDR for receiving weather fax, NavTex, satellite weather, AIS, RTL 433, morse code and more. It really is an "all-in-one" device.

His blog post explains in detail how each of the components work in the system, and in particular for the RTL-SDR he shows how you can use the boat computer to receive FM via GQRX, and NavTex via the Java based Frisnit Navtex decoder. Navtex is a marine radio service that transmits at 518 kHz or 490 kHz. It provides text data regarding weather forecasts, weather warnings, navigational information, and urgent maritime safety messages. For his antenna he writes that he uses a 10 kHz - 30 MHz Mini Whip antenna that he purchased on Aliexpress.

mgrouch's Boat Computer with RTL-SDR
mgrouch's Boat Computer with RTL-SDR

A 3D Printed Dual Screen Cyberdeck with Built in RTL-SDR

$
0
0

A Cyberdeck is a portable retro styled computer on the outside, but on the inside they typically consist of modern components like a Raspberry Pi. Having been inspired by the aesthetic of the Reviiser cyberdeck project, Reddit user u/dapperrogue set out to build his own version with a built in RTL-SDR.

In his Imgur post, dapperrogue documents the build process. The build consists of multiple 3D printed parts for the enclosure, as well as a really cool home made mechanical keyboard and dual LCD screens. Inside is a Raspberry Pi 4, with RTL-SDR Blog V3, as well as supporting components like a 12v to 5v step down converter, USB hub and four cooling fans. The RTL-SDR connects to a BNC port which is accessible from the outside.

CyberDeck with built in RTL-SDR
CyberDeck with built in RTL-SDR

TechMinds: OpenWebRX Feature Overview And Raspberry Pi Setup

$
0
0

Over on YouTube TechMinds has posted his latest video which shows an overview of the features available in OpenWebRX, and also how to set it up on a Raspberry Pi. OpenWebRX is software which allows you to access your SDR remotely via the internet or local network through a web browser. All major SDRs are supported including RTL-SDRs. The software includes a waterfall display, all the standard demodulators, as well as several digital decoders for DMR, YSF, NXDN, D-Star, POCSAG, APRS, FT8, FT4, WSPR, JT65 and JT9.

In the video TechMinds first demonstrates OpenWebRX in action, showing reception of HF SSB amateur radio signals, decoding FT8 and plotting received grids on a map, decoding and plotting APRS on a map and decoding YSF/DSTAR/DMR digital voice. After this demonstration he goes on to show how to set up the OpenWebRX server on a Raspberry Pi via the installation image.

OpenWebRX Feature Overview And Raspberry Pi Setup

A Handheld SciFi Scanner Box with RTL-SDR and Thermal Camera

$
0
0

Over on his YouTube channel "saveitforparts" has been working on creating a handheld scanner/sensor box on a budget. This is a simple and fun build which is attempting to create something like a real life Star Trek scifi tricorder that you might imagine taking with you to analyze systems on another planet. The box embeds a Raspberry Pi, USB hub, battery pack, RTL-SDR and thermal camera inside. In the video he shows how everything fits into the box and gives a quick demo of the RTL-SDR and thermal camera in action. In the future he plans to add more sensors as well.

Handheld Scanning Device with Raspberry Pi - Part 2

KerberosSDR: Tracking a Weather Balloon Radiosonde with Radio Direction Finding

$
0
0

The KerberosSDR is our 4-channel phase coherent capable RTL-SDR unit that we previously successfully crowdfunded back in 2018.  With a 4-channel phase coherent RTL-SDR interesting applications like radio direction finding, passive radar and beam forming become possible. It can also be used as 4 separate RTL-SDRs for multichannel monitoring.

KerberosSDR can be purchased from our partner store at https://othernet.is/products/kerberossdr-4x-coherent-rtl-sdr.

In one of our latest tests we've been able to track a weather balloon radiosonde via the direction finding ability of KerberosSDR. These balloons are launched twice daily by meteorological agencies around the world, and the radiosonde carried by the balloon transmits an RS-41 signal continuously throughout it's flight sending back telemetry such as weather information and GPS coordinates. The KerberosSDR tracks the bearing towards the balloon using only the raw signal - it does not decode. Having the actual GPS location from the RS41 data allows us to compare and confirm that the KerberosSDR is indeed tracking the bearing of the balloon.

In this test we used the excellent 4-element dipole array made by Arrow Antennas. In particular we used the 406 MHz element version as the RS-41 signal is broadcast at 403 MHz. The antenna array is mounted on the roof, the KerberosSDR is in the attic connected to a Raspberry Pi 4. Our KerberosSDR Android app is used to plot the bearings. A separate RTL-SDR running on the video recording PC is connected to it's own antenna and is used to receive and decode the RS41 signal. The free software RS41 Tracker is used to decode and map the balloon for location confirmation. 

We are currently using the latest beta code in development (unreleased at the time of this post - it will be released within 1 to 2 months) which handles non-continuous intermittent signals better.

Arrow Antennas 4-Element Dipole Array Mounted on Roof

The short video below shows a timelapse of the RS41 decoder tracking a balloon which circled the south of our KerberosSDR. The red line indicates the zero degree direction of the antenna array, while the blue line indicates the estimated direction of the balloon determined via the MUSIC radio direction finding technique.

The GPS balloon map from RS41 tracker is overlayed on top of the KerberosSDR Android app map for clarity via video editing. We can see that it mostly tracks the balloon to within a few degrees. When the blue bearing line diverges this is due to the balloon's line of sight path to the antennas being obscured by terrain, buildings or trees. When this is the case a multipath signal reflecting off surrounding hills tends to become dominant.

In the second short video below the weather balloon tracked northwards. Towards the north, north west and north east we have antenna obstructions in the form of rising terrain, houses and hills, so the overall accuracy is poorer. However, it still tracks within a few degrees most of the time.

Finally the YouTube video below shows the same as the above, but in the second half includes the full screen including the KerberosSDR DoA graphs and SDR# waterfall showing signal strength.

KerberosSDR Tracking a Weather Balloon Radiosonde with Radio Direction Finding

In the future we hope to test with two or more KerberosSDR units producing multiple bearing lines on RDFMapper, hopefully resulting in cross points that can be used to estimate the actual location of the balloon.

Setting up a Raspberry Pi for Ham Radio with RTL-SDR

$
0
0

Over on his blog F4GOH has posted a rather comprehensive tutorial consisting of seven PDF documents showing how he's set up his Raspberry Pi for ham radio and other RF projects. The PDF's essentially form a book that starts with the very basics like preparing an OS for the Pi SD Card, powering on the Pi, finding the IP address and connecting to it with SSH or VNC.

The tutorials move on to installing and using various ham radio programs like Fldigi, WSJT-X , GQRX, GNU Radio, before going on to teach some more Linux concepts. The final two PDF tutorials cover the installation and use of OpenWebRX for remote RTL-SDR use, R2Cloud for decoding weather satellites, and finally Radiosonde Auto RX for decoding radiosonde's on weather balloons.

[Also seen on Hackaday]

Raspberry Pi for Ham Radio
Viewing all 83 articles
Browse latest View live


Latest Images