Quantcast
Channel: raspberry pi – rtl-sdr.com
Viewing all 83 articles
Browse latest View live

Transmitting DATV with a just a Raspberry Pi

$
0
0

All the way back in April 2014 we first posted about how the Raspberry Pi was able to transmit FM by cleverly modulating one of it’s GPIO pins. Later in October 2015 F5OEO expanded this idea and created software that allowed the Raspberry Pi to transmit not only FM, but also AM, SSB, SSTV and FSQ. Soon after some filter shields such as the QRPi were released to try and cut down on the spurious emissions caused by transmitting using this method.

Now F5OEO has once again taken this method a step forward and has created software capable of allowing the Raspberry Pi to transmit Digital Amateur TV (DATV). The software is called Rpidatv, and can be downloaded from https://github.com/F5OEO/rpidatv. It can be run from the command line, or via a touch graphical interface if you have a touchscreen LCD screen. DATV is a DVB-S broadcast and can be decoded with an RTL-SDR by using the leandvb software which is bundled together with the Rapidatv software. Previously we’d posted about how the International Space Station intends to one day transmit DATV and that it can be decoded with an RTL-SDR.

F5OEO writes that the software is capable of generating a symbol rate from 64k symbols to 1M symbols, which is enough to transmit one video with good H264 encoded quality. He also writes that using a low symbol rate may be useful for long distance transmissions as the signal will take up a smaller bandwidth. For example a 250K symbol transmission would only need 300kHz of bandwidth. He writes that this type of transmission could easily be used in the ISM band to replace WiFi video for FPV, but that at the moment video latency is about 1 – 2 seconds and is still being improved.

Once again we remind you that if you intend to transmit using these methods where a GPIO pin is modulated, then you MUST use a bandpass filter at the frequency you are transmitting at, and that you must be licensed to transmit on those frequencies.

A DATV transmission received from a Raspberry Pi transmitter.
A DATV transmission received from a Raspberry Pi transmitter.

The post Transmitting DATV with a just a Raspberry Pi appeared first on rtl-sdr.com.


Videos Showing Rpidatv in action

$
0
0

A few days ago we posted about the release of Rpidatv, a program that allows a Rapberry Pi to transmit DATV without the need for any additional hardware. DATV stands for Digital Amateur TV, and can be received with an RTL-SDR using a program called leandvb.

Over on YouTube, the programmer of Rpidatv (Evariste F5OEO) has uploaded a video that shows a Rpidatv + leandvb system in action. The video demonstrates the touch screen GUI which can be used if a touch capable LCD screen is connected to the Raspberry Pi. It also shows the whole system in action with a video being transmitted from the Raspberry Pi camera to a Linux PC with an RTL-SDR running leandvb.

Another video uploaded to YouTube by Qyonek also shows Rpidatv + leandvb in action.

The post Videos Showing Rpidatv in action appeared first on rtl-sdr.com.

Building a Homemade FM Repeater with a Raspberry Pi, Rpitx and RTL-SDR Dongle

$
0
0

A radio repeater is usually a radio tower that receives weak signals from handheld, desktop or other radio, and rebroadcasts the same signal at a higher power over a wide area at a different frequency. This allows communications to be extended over a much greater area.

Repeaters are generally made from expensive professional grade radio equipment, however ZR6AIC has been experimenting with creating an ultra low cost repeater out of a RTL-SDR and Raspberry Pi. In his system the RTL-SDR dongle is set up to receive a signal on the 70 cm (420 – 450 MHz) amateur radio band, and then retransmit it using Rpitx on the 2M (144 – 148 MHz) amateur radio band.  He also adds a 2M low pass filter to the output of the Raspberry Pi to keep the signal clean.

RTL-SDR + Rpitx Block Diagram
RTL-SDR + Rpitx Block Diagram

Rpitx is software for the Raspberry Pi which we have featured on this blog several times in the past. We’ve also seen the qtcsdr software which also uses Rpitx and an RTL-SDR to create a transceiver. Rpitx allows the Raspberry Pi to transmit radio signals without the need for any transmitting radio hardware at all. It works by modulating signals onto a General Purpose I/O (GPIO) pin on the Raspberry Pi. If the GPIO pin is modulated in just the right way, FM/AM/SSB or other signal modulation approximations can be created at a specified frequency. The signal is however not clean, as this type of modulation generates many harmonics which could be dangerous if amplified. If you use Rpitx, always use appropriate filtering hardware.

ZR6AIC’s post goes into detail about how to install and set up the required software onto the Raspberry Pi and how to set up the script to piece all the programs together into a repeater. He’s also uploaded a video demonstrating the system in action on YouTube.

https://www.youtube.com/watch?v=yTSNtzfe2YA

The post Building a Homemade FM Repeater with a Raspberry Pi, Rpitx and RTL-SDR Dongle appeared first on rtl-sdr.com.

Decoding DAB with an RTL-SDR and SDR-J On an Odroid C2

$
0
0

The Odroid C2 is a $40 USD single board computer with a 1.5 GHz ARM-A53 quad core CPU and 2 GB of RAM. Compared to a Raspberry Pi 3 it is more powerful and costs almost the same. YouTube uploader radio innovation recently wrote into us and wanted to share his video showing SDR-J decoding DAB+ smoothly on his Odroid C2. It seems that SDR-J works perfectly and only uses a small amount of CPU.

DAB stands for Digital Audio Broadcast and is a replacement/alternative to standard broadcast FM stations. SDR-J is a software suite that includes a DAB decoder for the RTL-SDR. It is compatible with Windows, Linux and the Raspberry Pi (and evidently also the Odroid C2). Over on their website they also provide a ready to go Raspberry Pi 2 image, and they write that it should perform well on the Rpi2 platform as well.

We’ve also seen that there is a new variant of SDR-J for the Raspberry Pi (and potentially other similar devices) available on GitHub. This one has a nice touch screen friendly GUI, which should be useful for creating a cheap portable DAB device.

Alternative SDR-J Raspberry Pi GUI
New SDR-J Variant for the Raspberry Pi with nice GUI

http://www.youtube.com/watch?v=VJgqgtdp5Lc

The post Decoding DAB with an RTL-SDR and SDR-J On an Odroid C2 appeared first on rtl-sdr.com.

Tutorial: Replay Attacks with an RTL-SDR, Raspberry Pi and RPiTX

$
0
0

With an RTL-SDR dongle, Raspberry Pi, piece of wire and literally no other hardware it is possible to perform replay attacks on simple digital signals like those used in 433 MHz ISM band devices. This can be used for example to control wireless home automation devices like alarms and switches.

In this tutorial we will show you how to perform a simple capture and replay using an RTL-SDR and RPiTX.  With this method there is no need to analyze the signal, extract the data and replay using a 433 MHz transmitter. RPiTX can replay the recorded signal directly without further processing just like if you were using a TX capable SDR like a HackRF to record and TX an IQ file.

Note that we’ve only tested this replay attack with simple OOK 433 MHz devices. Devices with more complex modulation schemes may not work with this method. But the vast majority of 433 MHz ISM band devices are using simple modulation schemes that will work. Also replay attacks will not work on things like car keys, and most garage door openers as those have rolling code security.

A video demo is shown below:

Hardware used and wireless ISM band devices tested with RPiTX
Hardware used and wireless ISM band devices tested with RPiTX

RpiTX

RPiTX is open source software which allows you to turn your Raspberry Pi into a general purpose transmitter for any frequency between 5 kHz to 500 MHz. It works by using square waves to modulate a signal on the GPIO pins of the Pi. If controlled in just the right way, FM/AM/SSB or other modulations can be created. By attaching a simple wire antenna to the GPIO pin these signals become RF signals transmitted into the air.

Of course this creates an extremely noisy output which has a significant number of harmonics. So to be legal and safe you must always use bandpass filtering. Harmonics could interfere with important life critical systems (e.g. police/EMS radio, aircraft transponders etc).

For testing, a short wire antenna shouldn’t radiate much further than a few meters past the room you’re in, so in this case you should be fine without a filter. But if you ever connect up to an outdoor antenna or amplify the signal then you absolutely must use adequate filtering, or you could find yourself in huge trouble with the law. Currently there are no commercially made 433 MHz filters for RPiTX available that we know of, so you would need to make your own. Also remember that you are still only allowed to transmit in bands that you are licensed to which for most people will be the ISM bands.

In the past we’ve seen RPiTX used for things like controlling an RC car, building a home made FM repeater, creating a ham transceiver and transmitting WSPR (via a well made filter). We’ve also seen people perform replay attacks using the cleaner but harder way by reverse engineering a 433 MHz signal, and then generating the RPiTX OOK modulation manually.

Tutorial

In this tutorial we will show how to perform replay attacks on simple OOK modulated 433 MHz ISM band devices using an RTL-SDR dongle and RPiTX. The RTL-SDR will be used to record an AM audio file of the signal, and then RPiTX will do it’s magic to transform that recording into a file that can be transmitted back on the same frequency via one of the Raspberry Pi’s GPIO pins.

Install RPiTX

Installation instructions are available on the RPiTX GitHub page at https://github.com/F5OEO/rpitx. It’s very simple to install as all you need to do is clone the repo, and then run an automated install script.

Install the latest Keenerd version of RTL-SDR

We need the Keenerd version of RTL-SDR as his version provides an option which allows us to output rtl_fm data with a WAV header, allowing us to record directly to a wav file using sox.

git clone https://github.com/keenerd/rtl-sdr
cd rtl-sdr/
mkdir build
cd build
cmake ../ -DINSTALL_UDEV_RULES=ON
make
sudo make install
sudo ldconfig

Install Sox

sudo apt-get install sox

Recording the Data

Using receiver software with a visual spectrum analyzer and/or waterfall like SDR#, GQRX, HDSDR or SDR-Console determine the exact frequency and bandwidth of the digital signal that you want to copy. For example in the image below the center frequency of the signal is 433.897 MHz, and the bandwidth is about 10000 Hz (10 kHz). Also you may want to determine the optimum RF gain settings.

Be aware that many cheap remotes are not particularly frequency accurate and the frequency can change slightly just by the position of your hand on the remote. So be consistent with the way that you handle the remote to ensure that you’re always on frequency.

Example of a 433 MHz device transmitting.
Example of a 433 MHz device transmitting.

When ready, run the following command on your Pi, press the button on your remote, and then press CTRL+C on the keyboard to stop the recording. Make sure to change the frequency (-f), bandwidth (-s) and gain (-g) to what you determined earlier. This command will record an AM 48 kHz wav file of your keyfob signal. 48 kHz is what RPiTX expects.

rtl_fm -M am -f 433.897M -s 10k -g 20 -E wav -F 9 - | sox -t wav - myrec.wav rate 48k

Normalize the Audio

Normalizing the audio brings the volume up to the loudest it can be without distorting the waveform. This must be done otherwise the RPiTX output will be weak. Use the following sox command to create the myrec_n.wav normalized wav file.

sox --norm=-3 myrec.wav myrec_n.wav

If you have speakers plugged into your Pi or the HDMI monitor attached to your Pi, you can optionally use the following command to test the recorded audio. You should be able to hear the signal audio playback.

play myrec_n.wav

Create an RFA File

This step converts the wav file into an RFA file, which is a file format used by RPiTX when transmitting. The RFA file format seems to work much better than the IQ options for AM OOK signals.

 piam myrec_n.wav myrec.rfa

Transmit with RPiTX

Use the following command to transmit with RPiTX, ensuring that you set the frequency to the correct value for your wireless device.

sudo rpitx -m RFA -i myrec.rfa -f 434004

Troubleshooting

If it doesn’t work first time try these steps:

  1. Make another longer recording with the button pressed down for longer.
  2. Play with the normalization, e.g. try –norm=0 vs –norm=-3.
  3. Ensure that you have a wire attached to the correct pin.
  4. Try the alternative RPiTX pin with the ‘-c 1’ flag.

Fixing USB Reset Problems for 24/7 rtl_433 Monitoring

$
0
0

Rtl_433 is an RTL-SDR compatible command line based tool for monitoring various 433 MHz ISM band devices, such as temperature sensors, weather monitors, TPMS, energy meters etc. A full list of support devices can be found on the rtl_433 Github.

Over on his blog “raspberrypiandstuff” mentions that he’s been using rtl_433 and an RTL-SDR on a remote headless Raspberry Pi to receive and monitor temperature and humidity from his weather station. From the data he’s able to produce some nice graphs that show changes over time.

However, one problem that he ran into was that the USB controller on the Raspberry Pi would sometimes hang. The only solution he’d previously found to fixing it was to physically disconnect and then reconnect the RTL-SDR. But now “raspberrypiandstuff” writes that he’s found a new solution which is to use a small C-program called usbreset.c. Combined with a bash script that detects which device the RTL-SDR is on the bus, this tool helps to automatically reset the USB on the Pi if it fails to keep the RTL-SDR logging 24/7 without physical intervention.

This may be a solution to look into if you’re experiencing similar issues with 24/7 monitoring on the Raspberry Pi. If you’re also interesting in rtl_433 monitoring, “raspberrypiandstuff” also has a post on creating a simple GUI for rtl_433.

RTLSDR4Everyone: Raspberry Pi guide & choosing your first dongle

$
0
0

Over on his blog rtlsdr4everyone author Akos has recently uploaded three new posts. The first post is about the Raspberry Pi minicomputer and the post discusses the merits of using the Raspberry Pi with an RTL-SDR dongle. The second post provides information to help people new to RTL-SDR choose their first dongle, and weighs up options between dongles that cost $10, $20, $25, $35 and $50 dollars. Finally, the third post compares two dongles on HF performance.

Raspberry Pi3 and RTL-SDR dongles.
Raspberry Pi3 and RTL-SDR dongles.

Setting up a Raspberry Pi Based AIS Receiver with an RTL-SDR

$
0
0

Over on YouTube user Tobias Härling has uploaded a video showing how he used a Raspberry Pi and RTL-SDR dongle to set up an AIS receiver. AIS stands for Automatic Identification System and is a radio system similar to ADS-B which allows you to create a radar-like system for boats. For Windows we have a tutorial on AIS reception here.

In his setup he uses rtl_ais and the kplex software and shows how to install everything from scratch. He also shows how to set the system up so that decoding automatically starts up and begins outputing NMEA data through the network when the Raspberry Pi is powered on. This way an a device like an iPad could be used to run OpenCPN to view the plotted ships.


Transmitting DATV with a just a Raspberry Pi

$
0
0

All the way back in April 2014 we first posted about how the Raspberry Pi was able to transmit FM by cleverly modulating one of it’s GPIO pins. Later in October 2015 F5OEO expanded this idea and created software that allowed the Raspberry Pi to transmit not only FM, but also AM, SSB, SSTV and FSQ. Soon after some filter shields such as the QRPi were released to try and cut down on the spurious emissions caused by transmitting using this method.

Now F5OEO has once again taken this method a step forward and has created software capable of allowing the Raspberry Pi to transmit Digital Amateur TV (DATV). The software is called Rpidatv, and can be downloaded from https://github.com/F5OEO/rpidatv. It can be run from the command line, or via a touch graphical interface if you have a touchscreen LCD screen. DATV is a DVB-S broadcast and can be decoded with an RTL-SDR by using the leandvb software which is bundled together with the Rapidatv software. Previously we’d posted about how the International Space Station intends to one day transmit DATV and that it can be decoded with an RTL-SDR.

F5OEO writes that the software is capable of generating a symbol rate from 64k symbols to 1M symbols, which is enough to transmit one video with good H264 encoded quality. He also writes that using a low symbol rate may be useful for long distance transmissions as the signal will take up a smaller bandwidth. For example a 250K symbol transmission would only need 300kHz of bandwidth. He writes that this type of transmission could easily be used in the ISM band to replace WiFi video for FPV, but that at the moment video latency is about 1 – 2 seconds and is still being improved.

Once again we remind you that if you intend to transmit using these methods where a GPIO pin is modulated, then you MUST use a bandpass filter at the frequency you are transmitting at, and that you must be licensed to transmit on those frequencies.

A DATV transmission received from a Raspberry Pi transmitter.
A DATV transmission received from a Raspberry Pi transmitter.

Videos Showing Rpidatv in action

$
0
0

A few days ago we posted about the release of Rpidatv, a program that allows a Rapberry Pi to transmit DATV without the need for any additional hardware. DATV stands for Digital Amateur TV, and can be received with an RTL-SDR using a program called leandvb.

Over on YouTube, the programmer of Rpidatv (Evariste F5OEO) has uploaded a video that shows a Rpidatv + leandvb system in action. The video demonstrates the touch screen GUI which can be used if a touch capable LCD screen is connected to the Raspberry Pi. It also shows the whole system in action with a video being transmitted from the Raspberry Pi camera to a Linux PC with an RTL-SDR running leandvb.


Another video uploaded to YouTube by Qyonek also shows Rpidatv + leandvb in action.

Building a Homemade FM Repeater with a Raspberry Pi, Rpitx and RTL-SDR Dongle

$
0
0

A radio repeater is usually a radio tower that receives weak signals from handheld, desktop or other radio, and rebroadcasts the same signal at a higher power over a wide area at a different frequency. This allows communications to be extended over a much greater area.

Repeaters are generally made from expensive professional grade radio equipment, however ZR6AIC has been experimenting with creating an ultra low cost repeater out of a RTL-SDR and Raspberry Pi. In his system the RTL-SDR dongle is set up to receive a signal on the 70 cm (420 – 450 MHz) amateur radio band, and then retransmit it using Rpitx on the 2M (144 – 148 MHz) amateur radio band.  He also adds a 2M low pass filter to the output of the Raspberry Pi to keep the signal clean.

RTL-SDR + Rpitx Block Diagram
RTL-SDR + Rpitx Block Diagram

Rpitx is software for the Raspberry Pi which we have featured on this blog several times in the past. We’ve also seen the qtcsdr software which also uses Rpitx and an RTL-SDR to create a transceiver. Rpitx allows the Raspberry Pi to transmit radio signals without the need for any transmitting radio hardware at all. It works by modulating signals onto a General Purpose I/O (GPIO) pin on the Raspberry Pi. If the GPIO pin is modulated in just the right way, FM/AM/SSB or other signal modulation approximations can be created at a specified frequency. The signal is however not clean, as this type of modulation generates many harmonics which could be dangerous if amplified. If you use Rpitx, always use appropriate filtering hardware.

ZR6AIC’s post goes into detail about how to install and set up the required software onto the Raspberry Pi and how to set up the script to piece all the programs together into a repeater. He’s also uploaded a video demonstrating the system in action on YouTube.

Decoding DAB with an RTL-SDR and SDR-J On an Odroid C2

$
0
0

The Odroid C2 is a $40 USD single board computer with a 1.5 GHz ARM-A53 quad core CPU and 2 GB of RAM. Compared to a Raspberry Pi 3 it is more powerful and costs almost the same. YouTube uploader radio innovation recently wrote into us and wanted to share his video showing SDR-J decoding DAB+ smoothly on his Odroid C2. It seems that SDR-J works perfectly and only uses a small amount of CPU.

DAB stands for Digital Audio Broadcast and is a replacement/alternative to standard broadcast FM stations. SDR-J is a software suite that includes a DAB decoder for the RTL-SDR. It is compatible with Windows, Linux and the Raspberry Pi (and evidently also the Odroid C2). Over on their website they also provide a ready to go Raspberry Pi 2 image, and they write that it should perform well on the Rpi2 platform as well.

We’ve also seen that there is a new variant of SDR-J for the Raspberry Pi (and potentially other similar devices) available on GitHub. This one has a nice touch screen friendly GUI, which should be useful for creating a cheap portable DAB device.

Alternative SDR-J Raspberry Pi GUI
New SDR-J Variant for the Raspberry Pi with nice GUI

Tutorial: Replay Attacks with an RTL-SDR, Raspberry Pi and RPiTX

$
0
0

With an RTL-SDR dongle, Raspberry Pi, piece of wire and literally no other hardware it is possible to perform replay attacks on simple digital signals like those used in 433 MHz ISM band devices. This can be used for example to control wireless home automation devices like alarms and switches.

In this tutorial we will show you how to perform a simple capture and replay using an RTL-SDR and RPiTX.  With this method there is no need to analyze the signal, extract the data and replay using a 433 MHz transmitter. RPiTX can replay the recorded signal directly without further reverse engineering just like if you were using a TX capable SDR like a HackRF to record and TX an IQ file.

Note that we’ve only tested this replay attack with simple OOK 433 MHz devices. Devices with more complex modulation schemes may not work with this method. But the vast majority of 433 MHz ISM band devices are using simple modulation schemes that will work. Also replay attacks will not work on things like car keys, and most garage door openers as those have rolling code security.

A video demo is shown below:

Hardware used and wireless ISM band devices tested with RPiTX
Hardware used and wireless ISM band devices tested with RPiTX

RpiTX

RPiTX is open source software which allows you to turn your Raspberry Pi into a general purpose transmitter for any frequency between 5 kHz to 500 MHz. It works by using square waves to modulate a signal on the GPIO pins of the Pi. If controlled in just the right way, FM/AM/SSB or other modulations can be created. By attaching a simple wire antenna to the GPIO pin these signals become RF signals transmitted into the air.

Of course this creates an extremely noisy output which has a significant number of harmonics. So to be legal and safe you must always use bandpass filtering. Harmonics could interfere with important life critical systems (e.g. police/EMS radio, aircraft transponders etc).

For testing, a short wire antenna shouldn’t radiate much further than a few meters past the room you’re in, so in this case you should be fine without a filter. But if you ever connect up to an outdoor antenna or amplify the signal then you absolutely must use adequate filtering, or you could find yourself in huge trouble with the law. Currently there are no commercially made 433 MHz filters for RPiTX available that we know of, so you would need to make your own. Also remember that you are still only allowed to transmit in bands that you are licensed to which for most people will be the ISM bands.

In the past we’ve seen RPiTX used for things like controlling an RC car, building a home made FM repeater, creating a ham transceiver and transmitting WSPR (via a well made filter). We’ve also seen people perform replay attacks using the cleaner but harder way by reverse engineering a 433 MHz signal, and then generating the RPiTX OOK modulation manually.

Tutorial

In this tutorial we will show how to perform replay attacks on simple OOK modulated 433 MHz ISM band devices using an RTL-SDR dongle and RPiTX. The RTL-SDR will be used to record an AM audio file of the signal, and then RPiTX will do it’s magic to transform that recording into a file that can be transmitted back on the same frequency via one of the Raspberry Pi’s GPIO pins.

Install RPiTX

Installation instructions are available on the RPiTX GitHub page at https://github.com/F5OEO/rpitx. It’s very simple to install as all you need to do is clone the repo, and then run an automated install script.

Install the latest Keenerd version of RTL-SDR

We need the Keenerd version of RTL-SDR as his version provides an option which allows us to output rtl_fm data with a WAV header, allowing us to record directly to a wav file using sox.

git clone https://github.com/keenerd/rtl-sdr
cd rtl-sdr/
mkdir build
cd build
cmake ../ -DINSTALL_UDEV_RULES=ON
make
sudo make install
sudo ldconfig

Install Sox

sudo apt-get install sox

Recording the Data

Using receiver software with a visual spectrum analyzer and/or waterfall like SDR#, GQRX, HDSDR or SDR-Console determine the exact frequency and bandwidth of the digital signal that you want to copy. For example in the image below the center frequency of the signal is 433.897 MHz, and the bandwidth is about 10000 Hz (10 kHz). Also you may want to determine the optimum RF gain settings.

Be aware that many cheap remotes are not particularly frequency accurate and the frequency can change slightly just by the position of your hand on the remote. So be consistent with the way that you handle the remote to ensure that you’re always on frequency.

Example of a 433 MHz device transmitting.
Example of a 433 MHz device transmitting.

When ready, run the following command on your Pi, press the button on your remote, and then press CTRL+C on the keyboard to stop the recording. Make sure to change the frequency (-f), bandwidth (-s) and gain (-g) to what you determined earlier. This command will record an AM 48 kHz wav file of your keyfob signal. 48 kHz is what RPiTX expects.

rtl_fm -M am -f 433.897M -s 10k -g 20 -E wav -F 9 - | sox -t wav - myrec.wav rate 48k

Normalize the Audio

Normalizing the audio brings the volume up to the loudest it can be without distorting the waveform. This must be done otherwise the RPiTX output will be weak. Use the following sox command to create the myrec_n.wav normalized wav file.

sox --norm=-3 myrec.wav myrec_n.wav

If you have speakers plugged into your Pi or the HDMI monitor attached to your Pi, you can optionally use the following command to test the recorded audio. You should be able to hear the signal audio playback.

play myrec_n.wav

Create an RFA File

This step converts the wav file into an RFA file, which is a file format used by RPiTX when transmitting. The RFA file format seems to work much better than the IQ options for AM OOK signals.

 piam myrec_n.wav myrec.rfa

Transmit with RPiTX

Use the following command to transmit with RPiTX, ensuring that you set the frequency to the correct value for your wireless device.

sudo rpitx -m RFA -i myrec.rfa -f 434004

Troubleshooting

If it doesn’t work first time try these steps:

  1. Make another longer recording with the button pressed down for longer.
  2. Play with the normalization, e.g. try –norm=0 vs –norm=-3.
  3. Ensure that you have a wire attached to the correct pin.
  4. Try the alternative RPiTX pin with the ‘-c 1’ flag.

Fixing USB Reset Problems for 24/7 rtl_433 Monitoring

$
0
0

Rtl_433 is an RTL-SDR compatible command line based tool for monitoring various 433 MHz ISM band devices, such as temperature sensors, weather monitors, TPMS, energy meters etc. A full list of support devices can be found on the rtl_433 Github.

Over on his blog “raspberrypiandstuff” mentions that he’s been using rtl_433 and an RTL-SDR on a remote headless Raspberry Pi to receive and monitor temperature and humidity from his weather station. From the data he’s able to produce some nice graphs that show changes over time.

However, one problem that he ran into was that the USB controller on the Raspberry Pi would sometimes hang. The only solution he’d previously found to fixing it was to physically disconnect and then reconnect the RTL-SDR. But now “raspberrypiandstuff” writes that he’s found a new solution which is to use a small C-program called usbreset.c. Combined with a bash script that detects which device the RTL-SDR is on the bus, this tool helps to automatically reset the USB on the Pi if it fails to keep the RTL-SDR logging 24/7 without physical intervention.

This may be a solution to look into if you’re experiencing similar issues with 24/7 monitoring on the Raspberry Pi. If you’re also interesting in rtl_433 monitoring, “raspberrypiandstuff” also has a post on creating a simple GUI for rtl_433.

HF Reception with an EeePC and an RTL-SDR Blog V3 Running on a Raspberry Pi with SpyServer

$
0
0

Over on YouTube user IW2DZX has uploaded a video showing him using an old EeePC 900 to receive HF with an RTL-SDR V3 running in direct sampling mode on a Raspberry Pi 3 which is running a SpyServer. An EeePC 900 is an old netbook that was released in 2008 which is lightweight, portable and was fairly cheap. Second hand Eeepc's can now be found on eBay for less than $60 US.

By running the RTL-SDR on a Raspberry Pi 3 with SpyServer the need to have the dongle connected to the netbook is eliminated. Instead the radio data from the RTL-SDR is efficiently sent over a network connection and received via the WiFi on the Eeepc. 

The post HF Reception with an EeePC and an RTL-SDR Blog V3 Running on a Raspberry Pi with SpyServer appeared first on rtl-sdr.com.


Decoding Meteor-M Images on a Raspberry Pi with an RTL-SDR

$
0
0

Thanks to Andrey for writing in and showing us his Java based Meteor-M decoder for the RTL-SDR which he uses on a Raspberry Pi. The decoder is based on the meteor-m2-lrpt GNU Radio script and the meteor_decoder which he ported over to Java. Essentially what he's done is port over to Java a bunch of GNU Radio blocks as well as the meteor decoder. The ported Java blocks could also be useful for other projects that want to be cross platform or run without the need for GNU Radio to be installed.

In his blog post (blog post is in Russian, use Google Translate for English) Andrey explains his motivation for writing the software which was that the Windows work flow with SDR# and LRPTofflineDecoder is quite convoluted and cannot be run headless on a Raspberry Pi. He then goes on to explain the decoding algorithm, and some code optimizations that he used in Java to speed up the decoding. Andrey notes that his Java version is almost 2x slower compared to the GNU Radio version, but still fast enough for real time demodulation.

Meteor-M2 is a Russian weather satellite that operates in the 137 MHz weather satellite band. With an RTL-SDR and satellite antenna these images can be received. Running on a Raspberry Pi allows you to set up a permanent weather satellite station that will consistently download images as the satellite passes over.

Decoded Images with Andry's Meteor-M software on Raspberry Pi.
Images received with Andry's Meteor-M software running on a Raspberry Pi.

The post Decoding Meteor-M Images on a Raspberry Pi with an RTL-SDR appeared first on rtl-sdr.com.

Raspberry Pi 3 B+ Released: Faster CPU, Faster Networking and Power over Ethernet

$
0
0

RTL-SDR dongles and other SDRs are often used on single board computers. These small credit sized computers are powerful enough to run multiple dongles, and run various decoding programs. Currently, the most popular of these small computers is the Raspberry Pi 3.

Just recently the Raspberry Pi 3 B+ was released at the usual US$35 price. It is an iterative upgrade over the now older Raspberry Pi 3 B. The 3B+ has an improved thermal design for the CPU, which allows the frequency to be boosted by 200 MHz. WiFi and Ethernet connectivity has also been improved, both sporting up to 3x faster upload and download speeds.

The Raspberry Pi 3 B+ Power over Ethernet Hat
The Raspberry Pi 3 B+ Power over Ethernet Hat

The 3B+ also implements new Ethernet headers which allows for a cleaner Power over Ethernet (PoE) implementation via a hat. Previous PoE hats required that you connect the Ethernet ports together, whereas the new design does not. PoE allows you to power the Raspberry Pi over an Ethernet cable. The official PoE hat is not released yet, but they expect it to be out soon.

The faster processing speed should allow more processing intensive graphical apps like GQRX to run smoother, whilst the improved WiFi connectivity speeds should improve performance with bandwidth hungry applications like running a remote rtl_tcp server. PoE is also a welcome improvement as it allows you to easily power a remote Raspberry Pi + RTL-SDR combination that is placed in a difficult to access area, such as in an attic close to an antenna. Placing the Pi and RTL-SDR near to the antenna eliminates the need for long runs of lossy coax cable. If the Pi runs rtl_tcp, SpyServer or a similar server, then the RTL-SDR can then be accessed by a networked connected PC anywhere in your house, or even remotely over the internet from anywhere in the world. 

The Raspberry Pi 3 B+
The Raspberry Pi 3 B+

The post Raspberry Pi 3 B+ Released: Faster CPU, Faster Networking and Power over Ethernet appeared first on rtl-sdr.com.

Going Portable with the Airspy HF+, Raspberry Pi and 7-Inch Touch LCD

$
0
0

Over on the swling blog we've seen a post where contributor 'Tudor' demonstrates his Airspy HF+ running nicely on a Raspberry Pi 3, 7-inch touchscreen LCD, and USB power bank. The video shows GQRX running very smoothly on the Pi, and how the setup is able to receive various HF signals. Tudor writes:

I bought the RPi to use it as a Spyserver for my Airspy HF+ SDR.

My main radio listening location is a small house located on a hill outside the city and there is no power grid there (it’s a radio heaven!), so everything has to run on batteries and consume as little power as possible.

My first tests showed that the Raspberry Pi works very well as a Spyserver: the CPU usage stays below 40% and the power consumption is low enough to allow it to run for several hours on a regular USB power bank. If I add a 4G internet connection there I could leave the Spyserver running and connect to it remotely from home.

Then I wondered if the Raspberry Pi would be powerful enough to run a SDR client app. All I needed was a portable screen so I bought the official 7” touchscreen for the RPi.

I installed Gqrx, which offers support for the Airspy HF+. I’m happy to say it works better than I expected, even though Gqrx wasn’t designed to work on such a small screen. The CPU usage is higher than in Spyserver mode (70-80%) but the performance is good. Using a 13000 mAh power bank I get about 3.5 hours of radio listening.

On the swling blog post comments Tudor explains some of his challenges including finding a battery that could supply enough current, finding a low voltage drop micro-USB cable, and reducing the noise emanating from the Raspberry USB bus. Check out the post comments for his full notes. 

The post Going Portable with the Airspy HF+, Raspberry Pi and 7-Inch Touch LCD appeared first on rtl-sdr.com.

Automatically Receiving, Decoding and Tweeting NOAA Weather Satellite Images with a Raspberry Pi and RTL-SDR

$
0
0

Over on Reddit we've seen an interesting post by "mrthenarwhal" who describes to us his NOAA weather satellite receiving system that automatically uploads decoded images to a Twitter account. The set up consists of a Raspberry Pi with RTL-SDR dongle, a 137 MHz tuned QFH antenna and some scripts.

The software is based on the set up from this excellent tutorial, which creates scripts and a crontab entry that automatically activates whenever a NOAA weather satellite passes overhead. Once running, the script activates the RTL-SDR and APT decoder which creates the weather satellite image. He then uses some of his owns scripts in Twython which automatically posts the images to a Twitter account. His Twython scripts as well as a readme file that shows how to use them can be found in his Google Drive.

mrthenarwhal AKA @BarronWeather's twitter feed with automatically uploaded NOAA weather satellite images.
mrthenarwhal AKA @BarronWeather's twitter feed with automatically uploaded NOAA weather satellite images.

The post Automatically Receiving, Decoding and Tweeting NOAA Weather Satellite Images with a Raspberry Pi and RTL-SDR appeared first on rtl-sdr.com.

Nexmon SDR: Using the WiFi Chip on a Raspberry Pi 3B+ as a TX Capable SDR

$
0
0

Back in March of this year we posted about Nexmon SDR which is code that you can use to turn a Broadcom BCM4339 802.11ac WiFi chip into a TX capable SDR that is capable of transmitting any arbitrary signal from IQ data within the 2.4 GHz and 5 GHz WiFi bands. In commercial devices the BCM4339 was most commonly found in the Nexus 5 smartphone.

Recently Nexmon have tweeted that their code now supports the BCM43455c0 which is the WiFi chip used in the recently released Raspberry Pi 3B+. They write that the previous Raspberry Pi 3B (non-plus) cannot be used with Nexmon as it only has 802.11n, but since the 3B+ has 802.11ac Nexmon is compatible. 

Combined with RPiTX which is a Raspberry Pi tool for transmitting arbitrary RF signals using a GPIO pin between 5 kHz to 1500 MHz, the Raspberry Pi 3B+ may end up becoming a versatile low cost TX SDR just on it's own.

The post Nexmon SDR: Using the WiFi Chip on a Raspberry Pi 3B+ as a TX Capable SDR appeared first on rtl-sdr.com.

Viewing all 83 articles
Browse latest View live


Latest Images